邢旭明 (珠海南岛实业发展公司) 朱彦兴 朱金安 唐传祥 (中国石化巴陵石油化工公司)? 余新建 叶鼎 (中国市政工程中南设计研究院) 摘要 针对曝气技术优化的三要素:①气孔结构②扩大氧传质作用面③动能作用于扩散,研制了“大孔双向旋流、局部强化旋混、动能相互作用、圆罩阻挡散流”的新型曝气器。 关键词 污水处理 曝气 质量传递 曝气器 1 影响氧传质的可优化因素 在曝气池的运行中,会有很多因素影响曝气氧传质作用强度,例如:活性污泥特性、水温、污染物浓度、污染物成分、停留时间和曝气池深度等等,但诸如此类的影响因素属于工艺条件因素,不是曝气氧传质作用技术优化的对象。诸多复杂的工艺条件因素可以通过试验或建立数学模型而获得一个氧传质条件系数--KL(氧转移系数),因为KL值在曝气池工业运行中是无法获取的,因此可以认为KL值仅在工艺设计研究阶段有用。 通常在反映曝气氧传质作用强度时还用氧总转移系数-- KLa表示: KLa=KLA/V? 式中 A ---气相与液相接触界面 ? V --- 曝气池有效容积? 在式(1)中,一定的工艺条件之下KL与V都可以看成是非可控变量的常数值,而A值则取决于曝气的扩散作用,扩散产生的气液接触界面愈多则氧总转移系数愈大,氧传质作用强度也愈大。另外,式(1)还表明:在曝气运行中气相与液相接触界面稳定保有量的多少是曝气氧传质作用强度的唯一可控变量,只有可控才会存在技术优化的可能性。 2 氧传质技术优化要素 2.1 大孔扩散的结构优势 穿孔、散流、喷射、螺旋等几种曝气形式,基本特征都是大孔眼扩散,尽管此类曝气器具有阻力损耗小、不堵塞的结构可靠优势,但在技术上没有脱离"大孔产生大泡"的孔性扩散定势,曝气运行属于中大泡的状态,因此氧传质效率不高。? 阻力损耗小、不堵塞的大孔眼结构,应当是曝气氧传质作用技术优化的重要基础,但这个基础必须要脱离"大孔产生大泡"的孔性扩散定势,才会有可能获取较高的曝气氧传质效率。 2.2 细泡运行界面丰富 曝气升泡愈小气相的扩散程度愈大。通常认为孔或隙达到微米(μm)级则是细小孔隙的微孔曝气器。微孔曝气器的确是细小泡曝气运行,但不可避免地要带来阻力损耗大与易堵塞的问。微孔曝气器在投运一段时间以后随着孔隙堵塞的增加,升泡面与升泡密度均会明显减少。 一般认为,曝气器孔隙结构愈小,气泡会被分割得愈小。此观点与曝气运行的实际情况是有差异的。根据有关孔性扩散的实测表明:孔径与升泡泡径不是正比关系(见图1)。由图1可以看出:在孔眼直接排气的状态中,孔眼变小的趋势与升泡变小的趋势两者不是成比例的,孔眼可以搞得很细小但形成的升泡不会按比例变得很细小。 当气相经孔眼直接进入液相时,会在孔眼处有一个短促的柱状上升运动之后才会形成一个受力均匀的球状升泡,孔眼愈小只会使柱状愈细愈长,并不会使升泡按比例变小。曝气运行的实际情况表明:即使是所谓微米(μm)级孔隙的曝气器,升泡泡径也在r2>2mm的范围。由此可以得出的结论是:在深约4m的曝气池中,难以用微孔(隙)的方法而获得r2>3mm的升泡。采用微孔(隙)的曝气方法其实际扩散程度(Fs)并不是无限的。孔隙越小,只会是使阻力损耗与堵塞可能性更加增大,动力效率(Gs)也会变得更加不经济。 2.3 水体流动性不具有氧传质作用 曝气池是一个大环境,有2个因素对曝气池水体流动性有要求:一是防止浓度梯度所需的推流运动;二是防止活性污泥沉降的升流运动。气泡在作升泡运动时,要不断排斥水体,因此扩散的气流必然会带来升流运动。进入曝气池的水流量与回流量会有一定的推流作用,如果再想采用密度较轻的流体在点式布气条件之下推动密度较重的流体而加大流动作用,这显然是没有意义的。 喷射曝气与螺旋曝气其运行原理的基本点就是要产生用气流带动水流的线性扩散,其结果是使部分动能无功而耗。由于密度差异的悬殊,气相在推动液相作线性扩散时必须具备相当大的推动力,当这种推动力不足时,就只能在排气口处产生孔性扩散作大气泡升泡运行,这就是喷射与螺旋曝气方式的实际运行效果并不理想的重要原因。 曝气氧传质技术优化在布气方面应着重考虑的是布气均匀密布,致密的升泡必然会带来良好的升流运动。把布气动能作用于加大水体流动性,是曝气氧传质技术优化应当要避免的一个误区。 3 氧传质技术优化实例--旋混曝气器 通过上述论述可知曝气技术优化的三要素是: ① 气流排出孔口应采用大孔结构; ② 工作运行应尽可能地扩大氧传质作用面--气液接触界面; ③ 气流动能应全部作用于扩散作用。 旋混曝气器较为成功地做到了曝气技术优化三要素的有机结合,实现了在曝气运行中梦寐以求的由大孔结构而获得细小升泡运行效果,是具有高新技术含量的新一类曝气设备。 3.1 工作原理 大孔双向旋流--气流经旋混发生器一圈数个顺旋导流口和另外一圈数个反旋导流口双向旋流排出。 局部强化旋混--旋混筒使两个不同方向的旋流形成一个瞬间连续局部反应激剧的气液强化旋混区。 动能相互作用--气流排出导流孔口的动能相互作用呈拧扭剪切形态,使流体发生紊乱地碰撞。 圆罩阻挡散流--旋混所产生的大量粉碎性气泡经圆形散流罩阻挡散流作用之后均匀密布地向上作升泡运动。 旋混曝气器正是上述综合作用使气相在液相中获得了很大的旋性扩散,可以形成极为丰富的气液接触界面。旋混曝气器不是一个由简单的扩散孔径影响决定升泡泡径的曝气器,而是一个由多种综合作用制造均匀密布的细小升泡的曝气机器。 3.2 主要技术特性 全池阵列、多点布气,点阵范围≈700mm×700mm;导流孔属大孔型,单个排气孔口截面=26mm2;设备材质为优质工程塑料或不锈钢,采用独特的紧固套接装配与安装,免维修免更换,单套设备尺寸=230mm×230mm×230mm。 3.3 与微孔曝气器作清水对比演示 采用铸砂型圆帽微孔曝气器与HS-旋混曝气器在深4.7m的清水条件下做对比运行演示实验,见表1。结果表明:两者均是细小泡曝气运行,由升泡泡跃现象与升泡密度来看,旋混曝气器工作阻力明显低于微孔曝气器。? 表1 现场实测的物理性数据比较项目 | r2(mm) | Fs(倍) | As(m2/m3) | Ms(%) | 铸砂型圆帽微孔曝气器 | 4 | 155 | 750 | ≈80 | HS-旋混?曝气器 | 4 | 155 | 750 | ≈90 | 注 Fs--扩散程度 As--比表面积 Ms-升泡面 | 3.4 与喷射曝气器作同池对比 在岳阳石油化工总厂喷射曝气池中,放入一组28套HS-旋混曝气器同池对比,见表2。? 运行结果表明:旋混曝气器明显为细小升泡均匀密布地运行。相同的升泡面,旋混曝气器的需要气量仅为喷射曝气器的约1/3,而且前者是旋性扩散的细小泡,后者基本是孔性扩散的大泡,线性扩散不明显。? 表2 现场实测的物理性数据 | r2(mm) | Fs(倍) | As(m2/m3) | Ms(%) | Gs[m2/kW.h)] | Hs(m2/m3) | Φ25喷射曝气器 | 20 | 31 | 150 | ≈40 | ≈9000 | 0.21 | HS-旋混曝气器 | 4 | 155 | 750 | ≈90 | ≈35000 | 1.1 | 注 Gs——氧传质动力效率 Hs——界面保有量 | 3.5 实际运行状况 岳阳石油化工总厂7000m3活性污泥法曝气池安装1792套HS-旋混曝气器。运行状况表明:全部曝气服务面泡细均匀密布分散性好;升泡泡跃平缓无集中突出现象;供气负荷的调整对全池升泡均匀分散性基本没有影响。曝气器所采用的送气孔不规则,进气孔径控制平衡分布配气技术,达到了预期的送气孔孔性特定作用、无阀控制曝气池整体布气平衡配气的效果。? 现场实测的物理性数据:? ?r2=4mm;?Fs=155倍;?As=750m2/m3;? ?Ms>95%;?Gs≈35000m2/(kW·h)。?
作者简介:邢旭明 工程师? 通讯处:414014 湖南岳阳石油化工总厂供排水厂13-106#南岛公司岳阳办 (收稿日期 1998-08-20) |