沈耀良(苏州城建环保学院环境保护系) 王宝贞(哈尔滨建筑大学市政环境工程学院) 杨铨大 刘润芬(苏州城建环保学院环境保护系) 许甫庸(苏州大洋净水设备厂) 摘 要 对厌氧折流板反应器(ABR)处理城市污水与垃圾渗滤液混合废水过程中的水解酸化作用及污泥特性进行了研究。结果表明,ABR可有效地改善混合废水的可生化性。进水BOD5/COD为0.2~0.3时,出水BOD5/COD可提高至0.4~0.6;容积负荷达4.71 kgCOD/(m3·d)时,形成沉降性能良好、粒径为1~5mm的棒状颗粒污泥,各隔室中的污泥浓度为20~38g/L。混合废水经ABR的预处理,大大促进了废水进一步好氧处理的运行稳定性。 关键词 垃圾 渗滤液 厌氧折流板反应器 水解酸化 颗粒污泥 垃圾填埋场渗滤液中难生物降解有机物多,可生化性差,其BOD5/COD低达0.1~0.2[1],我国目前多将渗滤液与城市污水进行混合处理。为获得稳定而有效的处理效果,试验采用水解酸化—好氧工艺,而水解酸化段采用具有优良性能特点的ABR反应器。 ABR是一个由多隔室组成的高效新型反应器[2](见图1),具有水力条件好、生物固体截留能力强、微生物种群分布好、结构简单、启动较快及运行稳定等优良性能。运行中的ABR是一个整体为推流、各隔室为全混的反应器,因而可获得稳定的处理效果[3、4]。 1 试验方法 1.1 废水水质 渗滤液水样取自苏州七子山垃圾填埋场。渗滤液(pH为7.4~8.5)和城市污水(pH为7.1~8.5)的水质见表1。 表1 渗透液和城市污水水质 水质指标 | 浓度变化范围 | 渗滤液 | 城市污水 | CODcr | 3700~8885 | 165~305 | BOD5 | 1900~3180 | 106~248 | NH4+-N | 630~1800 | 25~35 | NH3+-N | 1.25~3.34 | - | NH2+-N | 0.06~1.52 | - | TP | 7.1~7.7 | 6.4~12.3 | SS | 328~400 | 255~348 | BOD5/COD | 0.25~0.358 | 0.64~0.81 |
1.2 试验用ABR ABR由4个隔室组成,总有效容积为13.2L,第一隔室的容积为3.0L,其余隔室容积均为3.4L。反应上流室和下流室的水平宽度比为4∶1,折流挡板底部转角为45°。由蠕动泵在ABR的进水端均匀进水。在各隔室顶部设集气管并接水封以保证厌氧条件。 1.3 研究方法及主要工艺参数 采用动态方法进行研究。首先进行启动运行,待运行稳定后,进行不同混合比的渗滤液和生活污水的混合处理研究。研究期间的气温为18.0~27.5℃,ABR的HRT为13.2~26.4h,反应器各上流室所装污泥浓度为10~15g/L。 2 结果及分析 2.1 ABR的水解酸化作用 混合废水经ABR处理后,其BOD5/COD比值明显提高,当进水BOD5/COD较低时,效果更为显著。如进水为0.665时,出水达0.68,进水为0.2~0.3时,出水可提高至0.4~0.6。ABR对出水BOD5/COD的改善,无疑可促进混合废水好氧处理的效果和运行稳定性。 BOD5/COD的提高反映了ABR反应器良好的水解酸化作用。研究表明,对不同的混合比、原渗滤液浓度、HRT,ABR反应器可获得不同程度的水解酸化作用。原渗滤液浓度和混合比较低时,产甲烷作用较弱,表观水解程度与实际水解程度接近;当原渗滤液浓度和混合比较高时,甲烷发酵加强,表观水解酸化度与实际情况差别较大。研究还发现,当原渗滤液浓度及混合比均较低时,水解酸化作用与HRT呈正相关(见图2,其中ΔBOD5表示进出水浓度之差)。 2.2 进水NH4+-N/COD和COD/TP与COD的去除率关系 由图3可见,ABR反应器中COD的去除率对NH4+-N/COD的变化较敏感,NH4+-N/COD过高或过低均影响COD的去除。当NH4+-N/COD≥0.2时,COD去除率将受到明显的影响。实际工程中应注意对进水中NH4+-N浓度的控制,并宜将NH4+-N/COD控制在0.05~0.2。 从图4可见,当渗滤液与城市污水混合比达1∶1时,曾出现缺磷问题(COD/TP=500~1000),导致系统运行效率降低,为此在进水中补充了磷。运行过程中,在磷基本满足比例要求的条件下,COD的去除率较为稳定,当COD/TP高达437.4时,仍具有较稳定的处理效果。 2.3 进水负荷与ABR的运行 图5所示为ABR的COD去除率随进水容积负荷的变化。由图可见,一方面ABR对COD的去除率随负荷的提高而逐渐提高,但提高速率逐渐下降(如图中虚线所示);另一方面,COD的去除率随混合比呈现出由高到低继而又升高的趋势(如图中实线所示)。对此可解释如下:当混合比较低且负荷亦较低时,混合废水中难生物降解的有机物含量也较低,其水质与城市污水接近,废水所含污染物大多易生物降解,导致ABR反应器中所发生的水解酸化作用程度较低。此时COD的去除主要通过对进水中悬浮物的截留、产酸菌对进水中基质的利用及较弱的产甲烷作用而实现。随混合比的提高,进水中难降解有机物量增加,水解酸化作用加强,导致COD去除率为负值。随混合比进一步提高,不仅水解酸化作用明显,而且产甲烷菌也起到了一定的降解效果。由于水解酸化作用受HRT、进水中难降解物质含量等因素的影响,而产甲烷作用则取决于酸化程度、HRT等,因而随混合比和负荷的提高,在酸化作用加强的同时,产甲烷作用亦相应加强。 2.4 污泥特性分析 当反应器运行至容积负荷 为4.71kgCOD/(m3·d)时,各隔室中形成沉降性能良好、外观由灰白色至灰黑色、粒径大小不等(0.5~5mm)的棒状及球状颗粒污泥,各隔室中颗粒污泥的大致粒径分布如图6。分析表明,颗粒污泥具有良好的沉降性能,其SVI为7.5~14.2mL/g。第一隔室的颗粒污泥较轻,呈灰色;第三隔室的颗粒污泥则沉降性能良好,呈深灰色。运行过程中观察到第一隔室中的污泥大部分处于悬浮态,泥水混合液较为粘稠,而以后各隔室中的污泥则在底部形成稠密的污泥层。 颗粒污泥的形成与渗滤液的水质、运行条件及ABR反应器的构造等因素有关。渗滤液中含有较高的碱度及其它碱金属离子,有利于污泥的颗粒化。镜检表明,ABR反应器的第二、三隔室污泥中含有较多甲烷八叠球菌及甲烷丝状菌,第四隔室中甲烷丝状菌占优势。 ABR不同隔室中颗粒污泥浓度有较大的差异,第一至第三隔室中颗粒污泥浓度呈增加趋势(20g/L、28.03g/L、37.96g/L),第四隔室浓度下降(24.0g/L),说明在第一隔室中水解作用较强,随隔室的推移,产酸作用占优势,到第三隔室产酸和一定程度的产甲烷作用同时存在,第四隔室产甲烷作用较占优势。由于产酸菌的生长速率较快,导致第二和第三隔室污泥浓度较高,同时第二和第三隔室中颗粒污泥的平均粒径均较大,其中颗粒为1~2 mm和2~4 mm的颗粒污泥在此两隔室中各占30%、40%及45%、30%左右。 3 结论 ABR应用于处理垃圾渗滤液与城市污水的混合废水并控制在水解酸化阶段时,具有优良的运行性能和效果。 ① 可获得明显的水解酸化作用,提高废水的可生化性,促进好氧段运行的稳定性。混合废水的BOD5/COD为0.2~0.665时,经ABR反应器处理后出水的BOD5/COD值可提高到0.37~0.68,且进水的BOD5/COD越低,其提高幅度越大。 ② 可形成性能良好的颗粒污泥。混合废水进水负荷达 4.71kgCOD/(m3·d)时,反应器内形成粒径为0.5~5mm、浓度为20~38 g/L的球状及棒状颗粒污泥。颗粒污泥的形成,大大提高了ABR反应器对冲击负荷的抵抗能力。 ③ 宜将进水COD/NH4+-N控制在5~20,并需注意在高混合比下的缺磷问题。 参考文献 1 Lema J M et al. Characteristics of landfill leachates and alternatives for their treatment:a review.Water,Air,and Soil Pollut,1988;40(1):223~250 2 沈耀良.新型厌氧处理工艺—厌氧折流板反应器.重庆环境科学,1994;16(5):36~38 3 Nachaiyasit S et al. The effect of loads on the performance of an Anaerobic Baffled Reactor(ABR):1. step changes in feed concentration at constant retention time.Water Res,1997;31(11):2737~2746 4 Nachaiyasit S et al. The effect of loads on the performance of an Anaerobic Baffled Reactor(ABR):2.step and transient hydraulic shock at constant feed strength.Water Res,1997;31(11):2747~2754
作者简介:沈耀良 男 38岁 博士 副教授 主要从事水污染控制工程的教学和科研工作 通迅处:215011 苏州市滨河路298号 苏州城建环保学院环境保护系 电 话:(0512)8247000(O) 8255325(H) 传 真:(0512)8242298 (收稿日期 1998-12-14) |